RES-Q-Trace:用于多组份痕量气体中红外检测,基于移动CEAS的演示仪(8)
文章出处:如特安防 人气:发表时间:2018-09-05 19:45:53
Published 2018 Jun 27
Author Contributions
N.L., U.M., H.Z., and J.-P.H.v.H. conceived and designed the sensor concept; U.M. developed the opto-mechanical part of the sensor; S.G. and M.W. developed the electronics in particular, for the controlling of the lasers; H.Z. developed hardware and software modules for the data acquisition system and evaluation; N.L., U.M., and J.-P.H.v.H. performed the experiments; N.L. and J.-P.H.v.H. performed the analysis of the data; N.L., J.R., and J.-P.H.v.H wrote the manuscript.
Funding
This work was supported by the German Federal Ministry of Education and Research Grant VIP, FKZ 03V0122. The authors thank F. Weichbrodt for his dedicated and valuable technical support.
Conflicts of Interest
The authors declare no conflict of interest.
References
1. Wang C., Sahay P. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits. Sensors. 2009;9:8230 doi: 10.3390/s91008230. [PMC free article]
2. Todd M.W., Provencal R.A., Owano T.G., Paldus B.A., Kachanov A., Vodopyanov K.L., Hunter M., Coy S.L., Steinfeld J.I., Arnold J.T. Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 µm) optical parametric oscillator. Appl. Phys. B. 2002;75:367–376. doi: 10.1007/s00340-002-0991-8.
3. Curl R.F., Capasso F., Gmachl C., Kosterev A.A., McManus B., Lewicki R., Pusharsky M., Wysocki G., Tittel F.K. Quantum cascade lasers in chemical physics. Chem. Phys. Lett. 2010;487:1–18. doi: 10.1016/j.cplett.2009.12.073.
4. Li J.S., Chen W., Fischer H. Quantum Cascade Laser Spectrometry Techniques: A New Trend in Atmospheric Chemistry. Appl. Spectrosc. Rev. 2013;48:523–559. doi: 10.1080/05704928.2012.757232.
5. Horstjann M., Bakhirkin Y.A., Kosterev A.A., Curl R.F., Tittel F.K., Wong C.M., Hill C.J., Yang R.Q. Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy. Appl. Phys. B. 2004;79:799–803. doi: 10.1007/s00340-004-1659-3.
6. Röpcke J., Davies P.B., Hamann S., Hannemann M., Lang N., van Helden J.H. Applying Quantum Cascade Laser Spectroscopy in Plasma Diagnostics. Photonics. 2016;3:45 doi: 10.3390/photonics3030045.
7. Risby T.H., Tittel F.K. Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis. Opt. Eng. 2010;49:1123. doi: 10.1117/1.3498768.
8. Brumfield B.E., Stewart J.T., Weaverm S.L.W., Excarra M.D., Howard S.S., Gmachl C.F., McCall B.J. A quantum cascade laser cw cavity ringdown spectrometer coupled to a supersonic expansion source. Rev. Sci. Instrum. 2010;81:063102. doi: 10.1063/1.3427357.
9. Wysocki G., Curl R.F., Tittel F.K., Maulini R., Bulliard J.M., Faist J. Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications. Appl. Phys. B. 2005;81:769–777. doi: 10.1007/s00340-005-1965-4.
10. Hübner M., Welzel S., Marinov D., Guaitella O., Glitsch S., Rousseau A., Röpcke J. TRIPLE Q: A three channel quantum cascade laser absorption spectrometer for fast multiple species concentration measurements. Rev. Sci. Instrum. 2011;82:093102. doi: 10.1063/1.3633952.
11. Shorter J.H., Nelson D.D., McManus J.B., Zahniser M.S., Milton D.K. Multicomponent Breath Analysis With Infrared Absorption Using Room-Temperature Quantum Cascade Lasers. IEEE Sens. J. 2010;10:76–84. doi: 10.1109/JSEN.2009.2035764. [PMC free article]
12. Wysocki G., Bakhirkin Y., So S., Tittel F.K., Hill C.J., Yang R.Q., Fraser M.P. Dual interband cascade laser based trace-gas sensor for environmental monitoring. Appl. Opt. 2007;46:8202–8210. doi: 10.1364/AO.46.008202.
13. Jagerska J., Jouy P., Tuzson B., Looser H., Mangold M., Soltic P., Hugi A., Brönnimann R., Faist J., Emmenegger L. Simultaneous measurement of NO and NO2 by dual-wavelength quantum cascade laser spectroscopy. Opt. Express. 2015;23:1512–1522. doi: 10.1364/OE.23.001512.
14. Berden G., Engeln R. Cavity Ring-Down Spectroscopy: Techniques and Applications. 1st ed. Wiley-Blackwell; West Sussex, UK: 2009.
15. Miller J.H., Bakhirkin Y.A., Ajtai T., Tittel F.K., Hill C.J., Yang R.Q. Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser. Appl. Phys. B. 2006;85:391–396. doi: 10.1007/s00340-006-2310-2.
16. Welzel S., Engeln R., Röpcke J. Quantum cascade laser based chemical sensing using optically resonant cavities. In: Gagliardi G., Loock H.-P., editors. Cavity-Enhanced Spectroscopy and Sensing. Volume 179. Springer; Berlin, Germany: 2014. pp. 93–142.
17. Van Helden J.H., Lang N., Macherius U., Zimmermann H., Röpcke J. Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser. Appl. Phys. Lett. 2013;104:131114. doi: 10.1063/1.4823545.
18. Hamilton D.J., Orr-Ewing A.J. A quantum cascade laser-based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air. Appl. Phys. B. 2011;102:879–890. doi: 10.1007/s00340-010-4259-4.
19. Gorrotxategi-Carbajo P., Fasci E., Ventrillard I., Carras M., Maisons G., Romanini D. Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit. Appl. Phys. B. 2013;110:309–314. doi: 10.1007/s00340-013-5340-6.
20. Bergin A.G.V., Hancock G., Ritchie G.A.D., Weidmann D. Linear cavity optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser. Opt. Lett. 2013;38:2475–2477. doi: 10.1364/OL.38.002475.
21. Manfred K.M., Ritchie G.A.D., Lang N., Röpcke J., van Helden J.H. Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 µm interband cascade laser. Appl. Phys. Lett. 2015;106:221106. doi: 10.1063/1.4922149.
22. Lang N., Macherius U., Wiese M., Zimmermann H., Röpcke J., van Helden J.H. Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy. Opt. Express. 2016;24:A536–A543. doi: 10.1364/OE.24.00A536.
23. Morville J., Kassi S., Chenevier M., Romanini D. Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking. Appl. Phys. B. 2005;80:1027–1038. doi: 10.1007/s00340-005-1828-z.
24. Morville J., Romanini D., Kerstel E. Cavity enhanced absorption spectroscopy with optical feedback. In: Gagliardi G., Loock H.-P., editors. Cavity-Enhanced Spectroscopy and Sensing. Volume 179. Springer; Berlin, Germany: 2014. pp. 163–209.
25. McCurdy M.R., Bakhirkin Y.A., Tittel F.K. Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide. Appl. Phys. B. 2006;85:445. doi: 10.1007/s00340-006-2365-0.
26. National Research Council of the National Academies . Existing and Potential Standoff Explosives Detection Techniques. The National Academies Press; Washington, DC, USA: 2004.
27. Nadezhdinskii A.I., Ponurovskii Y.Y., Stavrovskii D.B. Non-contact detection of explosives by means of a tunable diode laser spectroscopy. Appl. Phys. B. 2008;90:361. doi: 10.1007/s00340-007-2899-9.
28. Le Marchand L., Wilkens L.R., Harwood P., Cooney R.V. Use of Breath Hydrogen and Methane as Markers of Colonic Fermentation in Epidemiologic Studies: Circadian Patterns of Excretion. Environ. Health Perspect. 1992;98:199–202. doi: 10.1289/ehp.9298199. [PMC free article]
29. Hannemann M., Antufjew A., Borgmann K., Hempel F., Itterman T., Welzel S., Weltmann K.D., Völzel H., Röpcke J. Influence of age and sex in exhaled breath samples investigated by means of infrared laser absorption spectroscopy. J. Breath Res. 2011;5:027101. doi: 10.1088/1752-7155/5/2/027101.
30. Harren F.J.M., Berkelmans R., Kuiper K., te Lintel Hekkert S., Scheepers P., Dekhuijzen R., Hollander P., Parker D.H. On-line laser photoacoustic detection of ethene in exhaled air as biomarker of ultraviolet radiation damage of the human skin. Appl. Phys. Lett. 1999;74:1761. doi: 10.1063/1.123680.
31. Spanel P., Dryahina K., Smith D. Acetone, ammonia and hydrogen cyanide in exhaled breath of several volunteers aged 4–83 years. J. Breath Res. 2007;1:011001. doi: 10.1088/1752-7155/1/1/011001.
32. Oxley J.C., Smith J.L., Shinde K., Moran J. Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique. Propellants Explos. Pyrotech. 2005;30:127 doi: 10.1002/prep.200400094.
33. Dunayevskiy I., Tsekoun A., Prasanna M., Go R., Patel C.K.N. High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone. Appl. Opt. 2007;46 doi: 10.1364/AO.46.006397.
34. Gagliardi G., Loock H.-P. Cavity-Enhanced Spectroscopy and Sensing. 1st ed. Springer; Berlin, Germany: 2014.
35. Paul J.B., Lapson L., Anderson J.G. Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment. Appl. Opt. 2001;40:4904. doi: 10.1364/AO.40.004904.
36. Mazurenka M., Orr-Ewing A.J., Peverall R., Ritchie G.A.D. Cavity ring-down and cavity enhanced spectroscopy using diode lasers. Annu. Rep. Prog. Chem. Sect. C. 2005;101:100–142. doi: 10.1039/b408909j.
37. Van Helden J.H., Peverall R., Ritchie G.A.D. Cavity Enhanced Techniques Using Continous Wave Lasers. In: Berden G., Engeln R., editors. Cavity Ring-Down Spectroscopy: Techniques and Applications. Wiley-Blackwell; West Sussex, UK: 2009. pp. 27–56.
38. Centeno R., Mandon J., Cristescu S.M., Harren F.J.M. Sensitivity enhancement in off-axis integrated cavity output spectroscopy. Opt. Express. 2014;22:027985. doi: 10.1364/OE.22.027985.
39. Baran S.G., Hancock G., Peverall R., Ritchie G.A.D., van Leeuwen N.J. Optical feedback cavity enhanced absorption spectroscopy with diode lasers. Analyst. 2009;134:243–249. doi: 10.1039/B811793D.
40. Horstjann M., Nenakhov V., Burrows J.P. Frequency stabilization of blue extended cavity diode lasers by external cavity optical feedback. Appl. Phys. B. 2012;106:261–266. doi: 10.1007/s00340-011-4705-y.
41. Rothman L.S., Gordon I.E., Babikov Y., Barbe A., Benner D.C., Bernath P.F., Birk M., Bizzocchi L., Boudon V., Brown L.R., et al. The HITRAN Database 2012. J. Quant. Spectrosc. Radiat. Transf. 2013;130:4–50. doi: 10.1016/j.jqsrt.2013.07.002.
42. Sharpe S.W., Johnson T.J., Sams R.L., Chu P.M., Rhoderick G.C., Johnson P.A. Gas-phase databases for quantitative infrared spectroscopy. Appl. Spectrosc. 2004;58:1452–1461. doi: 10.1366/0003702042641281.
43. Menzel L., Kosterev A.A., Curl R.F., Tittel F.K., Gmachl C., Capasso F., Sivco D.L., Baillargeon J.N., Hutchinson A.L., Cho A.Y., et al. Spectroscopic detection of biological NO with a quantum cascade laser. Appl. Phys. B. 2001;72:859–863. doi: 10.1007/s003400100562.
44. Courtillot I., Morville J., Motto-Ros V., Romanini D. Sub-ppb NO2 detection by optical feedback cavity-enhanced absorption spectroscopy. Appl. Phys. B. 2006;85:407–412. doi: 10.1007/s00340-006-2354-3.
45. Kassi S., Chenevier M., Gianfrani L., Salhi A., Rouillard Y., Ouvrard A., Romanini D. Looking into the volcano with a MIR-IR DFB diode laser and Cavity Enhanced Absorption Spectroscopy. Opt. Express. 2006;14:11442–11452. doi: 10.1364/OE.14.011442.
46. Bell C.L., van Helden J.-P.H., Blaikie T.P.J., Hancock G., van Leeuwen N.J., Peverall R., Ritchie G.A.D. Noise-immune cavity-enhanced optical heterodyne detection of HO2 in the near-infrared range. J. Phys. Chem. A. 2012;116:5090–5099. doi: 10.1021/jp301038r.
47. Baren R.E., Parrish M.E., Shafer K.H., Harward C.N., Shi Q., Nelson D.D., McManus J.B., Zahniser M.S. Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of mainstream and sidestream cigarette smoke. Spectrochim. Acta Part A. 2004;60:3437. doi: 10.1016/j.saa.2003.11.048.
48. Schiller C.L., Bozem H., Gurk C., Parchatka U., Königstedt R., Harris G.W., Lelieveld J., Fscher H. Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO. Appl. Phys. B. 2008;92:419. doi: 10.1007/s00340-008-3125-0.
49. Catoire V., Robert C., Chartier M., Jacquet P., Guimbaud C., Krysztofiak G. The SPIRIT airborne instrument: A three-channel infrared absorption spectrometer with quantum cascade lasers for in situ atmospheric trace-gas measurements. Appl. Phys. B. 2017;123:244. doi: 10.1007/s00340-017-6820-x.
50. Richard L., Ventrillard I., Chau G., Jaulin K., Kerstel E., Romanini D. Optical-feedback cavity- enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis. Appl. Phys. B. 2016;122:247. doi: 10.1007/s00340-016-6502-0.
51. Manfred K.M., Hunter K.M., Ciaffoni L., Ritchie G.A.D. ICL-Based OF-CEAS: A Sensitive Tool for Analytical Chemistry. Anal. Chem. 2016;89:902. doi: 10.1021/acs.analchem.6b04030.
原著:N.Lang, U.Macherius, H.Zimmermann, S.Glitsch, M.Wiese, J.Röpcke, J.Pierre H. van Helden
本文由山东如特安防设备有限公司LK编译,转载必须注明来自 sdrtkm.com
本文标签字:量子级联激光器 带间级联 吸收光谱 腔增强光谱 痕量气体敏感
同类文章排行
- 有害气体的危害:四川食品厂发生员工中毒伤亡
- 检测乙炔浓度的气体探测器安装高度为多少,安
- 如特安防2021春节放假通知(气体报警器发货安排
- 安装乙炔气体探测器时,需要安装多高,安装距
- 山东如特安防2021年元旦放假通知
- S8200气体报警控制器可以监测氯乙烯气体浓度吗
- 药厂叉车充电间安安装氢气报警器案例介绍说明
- 山东如特安防RBT氧气探测器默认量程改为0-25%VO
- 江苏餐饮用户安装燃气泄漏自动切断报警器的相
- 可燃气体报警器检测量程及报警值设置的依据标
最新资讯文章
- 如特安防2021春节放假通知(气体报警器发货安排
- 山东如特安防2021年元旦放假通知
- 药厂叉车充电间安安装氢气报警器案例介绍说明
- 山东如特安防RBT氧气探测器默认量程改为0-25%VO
- 2020年双节(国庆中秋)山东如特安防假期时间以
- 4台黄色款KP836(NO2 O2 CO SO2)四合一有毒气体检测
- 20台R10型CO气体检测仪发往南通印刷厂
- S316型二合一(甲基砒啶+氨气)气体检测报警仪老
- 如特安防技术部为客户测试老化KP826四合一气体检
- 山东如特安防端午节放假通知
- RBT-8000-FCX型环氧乙烷气体探测器发往苏州医用品
- 双头可燃气体检测仪RBBJ-T20今日发往石家庄
- 11日发新乡两台R10糠醛气体检测仪 报警值40μmol
- 5月11日3套一拖二天然气泄漏切断报警器发货到镇
- 山东如特安防设备有限公司五一放假公告
- 美食街饭店餐馆厨房安装如特燃气泄漏检测报警
- 德州物流仓储公司安装6路氟利昂气体报警器用于
- 一带八溶剂油(稀料)气体报警器带证发往宁波
- 福建客户订购:液化气餐饮设备配套RBBJ-T丙烷气
- 水泥厂安装现场声光报警功能的气体报警器检测
如特安防手机版网站二维码